On Maneuvering Target Tracking with Online Observed Colored Glint Noise Parameter Estimation
نویسنده
چکیده
In this paper a comprehensive algorithm is presented to alleviate the undesired simultaneous effects of target maneuvering, observed glint noise distribution, and colored noise spectrum using online colored glint noise parameter estimation. The simulation results illustrate a significant reduction in the root mean square error (RMSE) produced by the proposed algorithm compared to the algorithms that do not compensate all the above effects simultaneously. Keywords—Glint noise, IMM, Kalman Filter, Kinematics, Target Tracking.
منابع مشابه
Observation noise modeling based particle filter: An efficient algorithm for target tracking in glint noise environment
In this paper, a novel particle filtering algorithm for target tracking in the presence of glint noise based on observation noise modeling is proposed. The algorithm samples particles using the observation likelihood function, the construction of which is converted to a modeling problem of observation noise. Additionally, the Gaussian mixture model is incorporated to approximate the distributio...
متن کاملTarget Tracking with Unknown Maneuvers Using Adaptive Parameter Estimation in Wireless Sensor Networks
Abstract- Tracking a target which is sensed by a collection of randomly deployed, limited-capacity, and short-ranged sensors is a tricky problem and, yet applicable to the empirical world. In this paper, this challenge has been addressed a by introducing a nested algorithm to track a maneuvering target entering the sensor field. In the proposed nested algorithm, different modules are to fulfill...
متن کاملParticle Filter for Ballistic Target Tracking with Glint Noise
The performance of ballistic target interception is critically dependent on the performance of the target state estimation. The estimation performance then strongly depends on the accuracy of the measurement model. The Gaussian uncertainty distribution has commonly been used for representing the statistical properties of sensor noise, due to its mathematical simplicity and effectiveness. Howeve...
متن کاملMMSE-Based Filtering for Linear and Nonlinear Systems in the Presence of Non-Gaussian System and Measurement Noise
This1 chapter addresses the problems of minimum mean square error (MMSE) estimation in non-Gaussian linear and nonlinear systems. In many scientific and practical problems (such as control, astronomy, economic data analysis, communication and radar surveillance), estimation of time-varying system state using a sequence of noisy measurements is performed using the dynamic state-space (DSS) model...
متن کاملHigh Maneuvering Target Tracking Based on Self-adaptive Interaction Multiple-Model
This study establishes a target motion model and an observation model under the condition of colored noise by using the Kalman filter based on an improved IMM (interactive multiple model) for maneuvering target tracking. To improve the overall performance of IMM algorithm, we proposed to combine the CV (constant velocity) and CA (constant acceleration) models with the "current" statistical mode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009